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High throughput automated fermentation systems have become a useful tool in early bio-
process development. In this study, we investigated a 24 x 15 mL single use microbioreactor
system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and
production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and
MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different car-
bon sources were tested using bolus, linear or exponential feeding strategies, showing the
capacity of the ambr 15f system to handle automated feeding. We used power per unit vol-
ume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which
were previously scaled-up to 20 L with a different biological system, thus showing a poten-
tial 1,300 fold scale comparability in terms of both growth and product yield. By exposing
the cells grown in the ambr 15f system to a level of shear expected in an industrial centri-
fuge, we determined that the cells are as robust as those from a bench scale bioreactor.
These results provide evidence that the ambr 15f system is an efficient high throughput
microbial system that can be used for strain and molecule selection as well as rapid scale-
up. VC 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on
behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58–68, 2018
Keywords: E. coli, single use microbioreactor, high throughput, scale-down, ambr 15
fermentation

Introduction

Great effort has been put into biopharma process develop-

ment specifically strain or media screening and fermentation

optimization to increase product yield and reduce product

development timelines.1–4 While shake flask systems have

been widely used for strain/product screening, they have the

disadvantage in that they lack automated feeding, pH and oxy-
gen control5,6 which potentially create an undesirable environ-
ment for cell growth. As a result, parallel small/mini
bioreactors have become a more desirable method in early
stages of process development as they have the capability to
control and mimic the conditions that the cells will experience
in a larger vessel.5,7–9 This has led to the development of auto-
mated high throughput fermentation systems as they provide
better early stage process understanding.1,2,10 There are many
high throughput systems commercially available for fermenta-
tion of mammalian and microbial cells, including Applikon’s
micro-matrix (24 3 1 to 5 mL, microbial and mammalian),
the micro24 from Pall11–15 (24 3 3 to 7 mL, aerobic and
anaerobic microbial fermentation, mammalian and insect cell
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culture), Biolector
VR

from m2p labs16,17 (32 3 800 mL to 2,000
mL mammalian and microbial), 2mag bioreactor from 2mag
AG (8 or 48 3 8 to 15 mL, aerobic and anaerobic microorgan-
ism)18 and ambr

VR

15 cell culture5,15,19–21 (24 3 10 to 15 mL,
mammalian).

ambr 15 cell culture has been commonly used and tested
showing comparable cell culture performance and productiv-
ity to different scale bench top bioreactors i.e., 2 L,22 3 L,19

5 L.5,20,23 It has also been shown that the ambr 15 can
mimic pilot plant scale (15 and 200 L23) and manufacturing
scale (up to 15,000 L20) bioreactor systems. The recent
development of the microbial ambr 15 fermentation system
(ambr 15f) has overcome the limitations of other microbial
microbioreactor systems as it has the capability of individual
monitoring and control of dissolved oxygen and pH. The
inclusion of pumped liquid addition lines allows for feed and

base to be pumped to individual vessels as required, and
pipetting operations can be automated to trigger induction
after a culture event, for example. The ambr 15f, as previ-
ously demonstrated in the ambr 15 cell culture,19,20 has the
capability to be used for design of experiments (DoE); the
hardware and software easily lends itself to this manner of
experimentation. Desired parameters can be DoE tagged in
the ambr 15f software and the range of process set points
imported from a DoE software package. Data from the ambr
15f, experiment can then be exported from the ambr 15f
software into a DoE software package for analysis.

In this study, we have addressed two issues. First, we
have evaluated the bioreactor reproducibility both within and
across culture stations (blocks of 12 bioreactor vessels) of
the ambr

VR

15 fermentation, in fed-batch mode for microbial
cell growth and production of heterologous proteins. Second,
we have demonstrated that this automated high throughput
microbioreactor system can be used as scale-down tool for
microbial fermentation.

Materials and Methods

Chemicals, unless specified otherwise, were obtained from
Sigma Chemical Co. Ltd. (Poole, Dorset, UK).

Bacterial strains and molecules

E. coli MC4100 cells expressing two single chain vari-
able fragment antibodies (scFv). scFv raised against omega
peptide of b-galactosidase, designated as scFv1 (courtesy
of Cobra Biologics),24 scFv anti-c-Met, designated as
scFv2 (courtesy of James Austerberry, University of Man-

chester).25 BL21 (DE3) cells expressing an scFv IL1B,
designated as scFv3 (kind donation of Prof Lloyd Rud-
dock, University of Oulu) and human growth hormone
(hGH).24 scFv1, scFv2 and hGH were translocated to the
periplasm (P).

Seed culture preparation

Seed cultures were inoculated with 15 lL of glycerol
stocks and cells were grown overnight in 5 mL of Luria
broth (LB) in an orbital shaker incubator at 308C, 250 rpm.
Overnight cultures were used to inoculate flasks with
200 mL of LB supplemented with antibiotics (100 lg mL21

of ampicillin or 50 lg mL21 of kanamycin) and were grown
for 3 h (308C, 250 rpm). These were used as a 10% (v/v)
inoculum for 200 mL of defined medium26 supplemented

with the corresponding antibiotics and cells were incubated
to an OD600 nm of 5 at 308C, 250 rpm for about 10 h.

Fed-batch fermentations

Fed-batch fermentations were performed using an ambr
VR

15 fermentation (ambr 15f) system (Sartorius Stedim Bio-
tech, Royston, UK) initial working volume 10 mL (maxi-
mum volume 15 mL). The ambr 15f has two culture stations
(CS1 and CS2), each one containing 12 single use micro-
bioreactors. The system has a liquid handler for reactor set
up and automated pipetting operations. Each culture station
has independent stirring control and controlled background
air flow with individual vessel heaters for fine temperature
control. The system has pumped liquid lines to all individual
vessels for feed and base additions delivering 5 lL shots.
The vessel includes a single Rushton-like impeller, sub-
surface sparge, feed lines, a line for liquid surface delivery
of base and optical sensors for pH and DO monitoring (12 s
cycle time).

Defined medium was supplemented to 90 g L21 of glyc-
erol in all fermentations, except for the fermentations where
two carbon sources were used, see details in materials and
methods section glucose and glycerol fermentations. Micro-
bioreactors were supplemented with polypropylene glycol
2000 (PPG) to a final concentration of 0.01% (v/v) and anti-
biotics (100 lg mL21 of ampicillin or 50 lg mL21 of kana-
mycin) prior to inoculation. The microbioreactors were
inoculated to an OD600 nm of 0.3, with cells that have been
adapted to grow on a defined medium. pH was measured on-
line using fluorescent sensor patches and the pH was held at
6.95 using 15% (v/v) ammonia solution or 15% (v/v)
H2SO4. Base was added using the pumped liquid delivery
system and acid using the liquid handler; the lower limit was
controlled at 6.90 and the upper limit at 7.20. The upper pH
limit control was activated after the first pH spike which was
used to indicate the end of the batch phase. The pH was
monitored off-line using the analysis module (AM) which
provides an automated, in-process pH sensor re-calibration
as necessary. Dissolved oxygen tension (DOT) was measured
on-line using fluorescent sensor patches and was maintained
at 30% using 1 vvm of air or air/oxygen as required, temper-
ature was maintained at 308C 6 0.20. To prevent foaming,
100 lL bolus additions of a 10% (v/v) PPG 2000 solution
were performed at regular intervals from inoculation to
induction using the liquid handler. The microbioreactors
were supplemented with 15 mM magnesium sulfate (2.0 M
stock) and 35 mM sodium phosphate (2.0 M stock, pH 6.5
at 258C) when the cells grew to an OD600 nm of 30–40.
Feeding and induction were triggered on an individual vessel
basis by way of a control loop observing an increase in pH
when the main carbon source was exhausted26–29; cells were
fed with 40% (w/w) glycerol at 3.2 mL L21 h21 using the
pumped liquid delivery system and induced using the liquid
handler in a single bolus addition to a final concentration in
the vessels of 1 mM isopropyl-beta-D-thiogalactopyranoside
(IPTG). Cell growth was monitored off-line by optical den-
sity measurements at 600 nm. Dry cell weight (DCW) of
each vessel was measured in duplicate at harvest as per
Branston et al.30

Fed-batch fermentations were also performed in four 1 L
Multifors fermenters (Infors UK Ltd., Reigate, UK). The
seed cultures were prepared as for the ambr 15f system; the
fermenters were inoculated to an OD600 nm of 0.3.
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Fermentations were performed as per Matos et al.31 with the

following modifications: working volume was 825 mL, pH

was controlled at 6.95 6 0.10 using 15% (v/v) ammonia

solution or 15% (v/v) H2SO4 and the temperature was main-

tained at 308C throughout the fermentation.

Glucose and glycerol fermentations

Two carbon sources and two feeding strategies were

investigated in the ambr 15f system; Figure 1A shows the

layout of the experimental design. The carbon sources were

glucose (CS1) or glycerol (CS2) with an initial concentration

of 30 g L21 of either carbon source in the defined medium.

The feeding strategy during the exponential phase were

either bolus or continuous. When the carbon source was

exhausted, as indicated by an increase in pH, the culture was

supplemented with a 40% (w/w) glucose or glycerol solution

to a final equivalent total concentration of 90 g L21. For the

bolus fed vessels, three additions of the 40% (w/w) solution

were performed at regular intervals over 10 h. In the case of

the continuously fed vessels, an exponential feeding method

was used to control the theoretical maximum growth rate

(lmax) at 0.30 h21. Each feeding strategy was tested in half

of the vessels of each culture station. At the end of exponen-

tial phase, a second pH spike was used to automatically

activate constant feeding and induction; cells were fed with
40% (w/w) glycerol or glucose at 3.2 mL L21 h21 and
induced at a final concentration of 1 mM (IPTG).

The starter cultures were prepared as mentioned in the
materials and methods section, seed culture preparation. All
other parameters of the fermentations were performed as
described in the materials and methods section, fed-batch
fermentations.

Scale-down fermentations

Equal power per unit volume (P/V) was chosen as the
scale down method.32,33 The power number (NP) for the
ambr 15f system was determined by the same method as
described in Nienow et al.,5 NP for Multifors was determined
using the correlation with Reynolds number for Rushton tur-
bine.34 For both systems, power (P) was calculated with:
P 5 NPqN3

i D5
i where NP is the power number, q is fluid

density, Ni is stirrer speed, Di is impeller diameter.5 The P/V
corresponding to the minimum and maximum stirrer speeds
in the Multifors bioreactors were calculated (155 and 7,661
W m23) and these values were used to determine the equiva-
lent stirrer speed in the ambr 15f (Table 1). ambr 15f has a
minimum stir speed of 500 rpm and maximum stir speed of
3,000 rpm. In addition, the volumetric mass transfer

Figure 1. A: Schematic representation of the experimental layout in the ambr 15f system. B: ambr 15f vessel. C and D: Schematic
representations of the control cascades strategies used for the scale-down characterization: C: cascade A (air/stirrer speed/
O2) and D: cascade B (air/O2/stirrer speed).

Table 1. Scale-Down Parameters in the Multifors and ambr 15f System Using Constant P/V

Impeller Characteristics Stirrer Speed (min21)

Type Number Diameter (mm) Working Volume (mL) Minimum Maximum

Multifors Rushton 2 38.0 825 300 1100
ambr 15f Rushton-like 1 11.4 10 710 2585
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coefficient (kLa) at both scales was compared to ensure that
this was not a limiting factor in the conditions tested. The
kLa at both scales was comparable; 150 h21 for the Multifors
(determined by the dynamic gassing out method as described
in Lamping et al.35) and between 150 and 180 h21 for the
ambr 15f system (estimated based on data included in the
Supporting Information Table S1). To maintain the DO set
point of 30% two cascade control strategies were investi-
gated: (A) first increase stirrer speed and then the proportion
of oxygen in the gas mix (i.e., air/stirrer speed/O2) (Figure
1C) or (B) increase oxygen percentage in gas mixture and
then increase stirrer speed (i.e., air/O2/stirrer speed) (Figure
1D).

The seed cultures were prepared as described in the mate-
rials and methods section, fed-batch fermentations. To
reduce variability, the same inoculum was used for both sys-
tems (ambr 15f and Multifors) and the medium for the ambr
15f was autoclaved in the Multifors vessels, removed in a
sterile manner and added to the ambr 15f vessels. The seed-
ing of the fermenters and all other parameters of the fermen-
tations were maintained/performed as described in materials
and methods sections seed culture preparation and fed-batch
fermentations.

Cell fractionation

Cells were fractionated into periplasm (P) and cytoplasm
(C) by the EDTA/lysozyme/cold osmoshock method as
described in Branston et al.30 Prior to fractionation the sam-
ple concentration was normalised to OD600 nm of 10 per mL.
All cell fractions were stored frozen in aliquots for further
experiments and analysis.

Cell lysis

The cells were lysed by freeze thawing as described in
Gaciarz, et al.36 The cell concentration was normalised to an
OD600 nm of 10 per mL, cells were collected by centrifuga-
tion (15 min, 18,000 g) and resuspended in lysis buffer
(50 mM sodium phosphate (pH 7.4), 20 lg mL21 DNase
and 0.1 mg mL21 egg white lysozyme). Samples were incu-
bated for 10 min and then frozen. The cell lysate was thaw
and the soluble fraction was collected by centrifugation (15
min, 18,000 g).

Protein purification

The His tag proteins were purified by immobilized metal
affinity chromatography (IMAC) using HisPur Cobalt Super-
flow Agarose resin (Thermo Scientific, MA, USA). 5 mL of
the soluble fraction were loaded in to the column and puri-
fied as described in Gaciarz, et al.36 The elution fraction was
buffer exchanged into 50 mM sodium phosphate buffer (pH
7.4) using a Vivaspin 500 with a molecular weight cut off of
10,000 Da (GE Healthcare Life Sciences, Buckinghamshire,
UK).

Protein detection

The protein concentration from the cell fractions was
determined by either western blot or high performance liquid
chromatography (HPLC). For western blotting, reduced sam-
ples were prepared according to manufacturer’s instructions
and loaded onto a 12% NuPAGE Bis-Tris gel electrophoresis
(Invitrogen, Paisley, UK), then wet transferred using XCell

II Blot Module to polyvinylidene difluoride membrane

(PVDF) (Invitrogen) according to manufacturer’s protocol.

Membranes were immunoblotted with an anti-His antibody

(Invitrogen) the labeled bands were detected using enhanced
chemiluminescence kit (BioRad, Herts, UK) according to the

manufacturer’s instructions. Membranes were scanned using

a GE Typhoon scanner (GE Healthcare Life Sciences). The

product concentration was determined by densitometry com-

paring against a known amount of purified material.

Protein L HPLC quantification was performed using an

Agilent 1200 series HPLC system (Agilent Technologies,

South Queensferry, UK) and 1 mL HiTrapTM Protein L col-
umn (GE Healthcare). 100 lL of sample was loaded onto

the column, the column was washed with 4 column volumes

(CV) of 20 mM phosphate buffer (pH 7.2). Gradient elution

with 20 mM phosphate buffer (pH 2.0) was used from a 0%

to 100% concentration over 10 CV at 1 mL min21. The col-

umn was re-equilibrated with 3 CV of the wash buffer. A
standard curve of purified scFv1 was used to determine the

concentration of scFv1 in the fermentation samples.

IMAC HPLC quantification was performed using an Agi-
lent 1200 series HPLC system and 1 mL HiTrapTM IMAC

HP column (GE Healthcare). The column was loaded with

CoSO4 according to manufacturer’s instructions. Hundred

microliter of sample were loaded onto the column, the col-

umn was washed with 4 CV of 20 mM phosphate, 500 mM
NaCl, 20 mM imidazole buffer (pH 7.4). Gradient elution

with 20 mM phosphate, 500 mM NaCl, 500 mM imidazole

buffer (pH 7.4) was used from a 0% to 100% concentration

over 10 CV at 1 mL min21. The column was re-equilibrated

with 3 CV of the wash buffer.

Cell resistance to damage measurements

A rotating disk shear device was used to determine the
relative resistance to damage of E. coli cells.30 At harvest,

20 mL of cell broth was exposed for 20 s to a rotation speed

of 233 revolutions per second (rps) in the device. The rota-

tional speed of 233 rps corresponds to an energy dissipation

rate (EDR) of 0.75 3 106 W kg21,37 which is equivalent to
the forces experienced in a continuous centrifuge.30 Pre and

postshearing samples were centrifuged at 17,000g for 10

min. The supernatant was removed for analysis. The shearing

was performed in triplicate for the 15 mL microbioreactors

(cell broth from three microbioreactors was combined to sat-

isfy the volume requirement of the shear device).

Particle size distribution

The particle size distribution of pre and post sheared

material was determined using Mastersizer 3000 (Malvern

Instruments, Malvern, UK). A wet dispersion unit was used

and each sample measurement was repeated five times. The

size distribution of the sheared and nonsheared cells was

analyzed using the nonspherical particle function within the
Mastersizer software V3.10 (Malvern Instruments).

Protein detection

The total soluble protein concentration from the pre and

post sheared material was determined by Bradford assay

(Thermo Scientific, IL, USA). The method was performed

according to the manufacturer’s instructions using 96 deep
square well micro plates. Absorbance was measured at
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595 nm using a plate spectrophotometer (Tecan Safire2,

Tecan, Reading, UK).

Statistical analysis

T test analysis or analysis of variance (ANOVA) were used

for comparison of group mean. Both test were performed in

OriginPro 9.1 (OriginLab Corporation, MA, USA).

Results and Discussion

Development of a robust process system

Parallel automated microbioreactor systems have the

potential to shorten process/product development time lines

by increasing the capacity to carry out many experiments

simultaneously.1 To have a successful high throughput sys-

tem, process robustness and system consistency are vital.2

ambr
VR

15 fermentation system consistency was tested by

measuring cell growth and productivity of an E. coli
MC4100 cell line expressing scFv1 where all the microbior-

eactors were inoculated from the same pool of cells and the

same set points and operating parameters were used in all

vessels. At the end of exponential phase, the exhaustion of

carbon source was indicated by DOT/pH spikes26–29 pH

spikes were used to trigger feed control loops, initiating

pumped addition of a 40% (w/w) glycerol feed solution on
an individual vessel basis. In addition the pH spikes also

activated control loops which prompted the liquid handler to

first add inducer (IPTG) and second take a sample from the

specific vessels.

Figure 2A shows the growth curves from E. coli MC4100

cells. The growth profile was consistent in the 24 vessels (12
vessels 3 2 culture stations ran simultaneously), with a coef-

ficient of variance between 3 and 7% over the 64 h of fer-

mentation. The maximum OD 600 nm achieved was 100 and

the DCW at the end of fermentation was 37.3 6 2.93 g L21.

Affinity high performance liquid chromatography (Protein L)

was used as a high throughput method to determine the con-

centration of the scFv1 in the periplasm (Figure 2A). The

scFv1 concentration at harvest was 0.84 6 0.22 g L21;

ANOVA test showed that the population variances at a level

of 0.05 were not significant. The concentration of scFv1 in

the extracellular medium was less than 0.1 g L21 showing

minimum product loss due to leakage into the extracellular

medium. A second, repeat experiment indicated a consistent

maximum growth rate between the two experiments (Figure

2B), with a lmax of 0.25 6 0.004 h21 for experiment 1 and

0.23 6 0.004 h21 for experiment 2. ANOVA test (level of

0.05) showed no significant variances in the maximum
growth rate, demonstraiting in-run (intra run) consistency.

The run-run (inter run) consistency/reproducibilty falls

within expected variability given that cultures were grown

from two separate inocula.

In summary, we developed a process to grow E. coli cells

in fed-batch mode in the ambr 15f system and have showed
that the cell growth and recombinant protein productivity

within two culture stations and the 24 microbioreactors was

reproducible.

Cell integrity has been shown to have an impact on down-

stream processing and product recovery38 for this reason

ultra scale-down (USD) technology was used to mimic the
forces that the cells will experience during downstream proc-

essing. At the end of fermentation the cells grown in the

ambr 15f system were exposed to a high energy dissipation

rate (EDR) of 0.75 3 106 W kg21, in a rotating shear

device37 where three vessels were pooled to satisfy the vol-

ume required for the device. No change was observed in the

particle size distribution profile compared to the single ves-

sels. The particle size distribution (Figure 3) and the soluble

protein release assay (data not shown) indicated that the cells

grown in the ambr 15f were able to withstand the shear

forces present during downstream processes, especially in

continuous centrifuges, this finding agreed with what had

been previously shown by Branston et al.30 for E. coli cells

cultivated in bench top bioreactors.

Scaling characterization

The ambr 15f system was compared with 4 3 1 L Multifors

bioreactors. The scale-down criterion chosen to compare the

nongeometrically similar systems was power per unit vol-

ume,33 the equivalent minimum and maximum stirrer speeds

for P/V scale-down fermentations are shown in Table 1. In

addition, the kLa of ambr 15f was compared with the Multifors

to ensure that this was not a limiting factor. In the case of a

limiting kLa at small scale, the volumetric mass transfer

Figure 2. Process development and reproducibility tests in
ambr 15f system.

A: Growth curve during fedbatch fermentations of E. coli
MC4100 cells grown in ambr 15f system. Cultures were
induced with IPTG (1 mM) and fed with 40% (w/w) glycerol
when carbon source was exhausted, n 5 24 vessels Protein L
HPLC results showing the scFv1 concentration in the periplas-
mic (P) fractions hours postinduction, n 5 24 for 40 and 63 h;
n 5 6 for 32 and 48 h. B: Exponential growth phase of E. coli
MC4100 cells from duplicate experiments 1 (�) and 2 (�),
n 5 24 respectively.
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coefficient could be improved by increasing the gas flow rate
and/or reducing the working volume as demonstrated in Sup-
porting Information Table S1 (Supporting Information

Appendix).

The growth curves from the scale-down experiments are
shown in Figure 4A. The maximum OD in CS1 and the four
1 L fermenters was achieved 22 h after inoculation, with a
matching lmax of 0.27 6 0.002 h21, showing that the cells at
both scales presented comparable growth rate. In the case of
CS2 (cascade B, Figure 1D) the maximum growth rate was
0.23 6 0.003 h21, the cell growth in these vessels was lower
than in CS1 (cascade A, Figure 1C) and in the Multifors fer-
menters (cascade A and B, Figures 1C, D), suggesting that
the performance of the cells might have been affected by the
cascade system used to control dissolved oxygen. ANOVA
test showed that at a level of 0.05 the maximum growth rate
from CS2 was significantly different from the one observed
in CS1 and the 1 L fermenters. In the CS2 (cascade B), dur-
ing the batch phase, the vessel with the faster growing cells
drives the impeller speed (Figure 5 iv). As we have shown
cell growth between vessels was highly consistent, therefore
there only a small variation (8 - 10%) was seen in the mea-
sured DO for the slower growing vessels (Figure 5 ii).

Irrespective of the difference in growth rate during expo-
nential phase of the cells in CS2, the maximum OD obtained
was similar to the cells grown in CS1 and Multifors. Product
titer from both scales of fermentation was determined at
18 h postinduction (Figure 4B) showing that scFv1 exported
to the periplasm of the cells was comparable at both scales
and cascade control strategies, being 0.42 (cascade B) and
0.65 (cascade A) g L21 for the ambr 15f and 0.55 (cascade
B) and 0.61 (cascade A) g L21 for the Multifors system,
similar results found at other time points (data not shown);
ANOVA test showed that at a level of 0.05 there was no sig-
nificant difference in means of product titer by control strat-
egy used or scale (1 L and 15 mL). In addition, the product
in the extracellular medium at both scales was less than
0.05 g L21.

Figure 5 shows the traces from the control cascade A and B
strategies used in both the Multifors and ambr 15f. As
expected, there were significant differences in the P/V (Figure
5 iii and iv), air (Figure 5 v and vi) and oxygen gas flow rates
(Figure 5 vii and viii) traces between the two control cascades.
For P/V, the coefficient of variance within the 12 vessels in
each CS and between the two CS was below 1.5% (Figure 5 iii
and iv). In the case of air gas flow rate, the coefficient of vari-
ance was 8% (Figure 5 v) and 14% for cascade A and cascade

Figure 3. Volume distribution of E. coli MC4100 cells expressing scFv1 in fed-batch fermentations grown in ambr 15f system.

Samples from CS1 (•, �, filled triangles) and CS2 (�, w, �) A: pre exposure to high shear forces and B: post exposure to high
shear forces.

Figure 4. Scale-down comparison of the ambr 15f and Multifors
fermenters.

A: Growth profile from fedbatch fermentations of E. coli MC4100
grown in parallel in ambr 15f (�, filled triangles) and Multifors
bioreactors (w,�), cascade control strategy A for filled symbols
and B for the empty symbols. Number ofreplicates in Multi-
fors 5 2 and ambr 15f 5 12. B: Protein L HPLC results showing
the scFv1 concentration inthe medium (M) and periplasmic (P)
fractions from the ambr 15f (w) and Multifors (�) fermentations
at 18 h postinduction.
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B respectively (Figure 5 vi), demonstrating that in this sce-

nario, control cascade A lead to less variability.

Figure 5 shows that there is a great deal of similarity

between the two bioreactor formats for cascade control strat-

egy A. It is worth noting that a simplification in this control

approach meant that once the maximum stirrer speed was

reached (Figure 5 iii), this value was held, therefore while

the P/V increases over time during the exponential growth

phase of the culture, the P/V subsequently decreases for the

Multifors system, as air flow rate was enough to maintain

DO set point, whilst it remains at this maximum level for

the ambr 15f system. It is also worth noting that the higher

observed kLa in the ambr 15f system is observed where at

matched peak P/V, a greater proportion of oxygen flow is

required in the Multifors system as compared to the ambr

15f bioreactor vessel (Figure 5 vii).

There is less similarity between the plots for cascade con-

trol strategy B whilst the comparison looks good toward the

beginning of the fermentation; this breaks down after 15 h.

At this stage an imbalance in the control strategy occurs in

the ambr 15f system leading to excess oxygenation (Figure 5

ii), likely to be the cause of reduced growth rate observed in

Figure 4A. It is possible that further tuning of the PID terms

used in the process parameters may help to alleviate this
issue however this was not observed in this study.

The pH showed similar tends and ranges, during batch

phase of the fermentation (20 h for cascade A and 26 h for

cascade B). The pH of the ambr 15f system (Figure 5 ix and

x) was controlled within the range of the Multifors and equal

percentage base was added at both scales (Figure 5 xi and
xii). However, in the fed-batch phase there was an increase

in the % of base (v/v) added to the ambr 15f.

There was no significant difference in the total evapora-

tion volume losses for cascade A and B. At the end of fer-

mentation the total evaporation for vessels in either cascade

A and B was 5% of the total volume. As the evaporation
rates during this experiments were minimal, and given the

intrinsic variability of the analytical methods (i.e., Optical

density measurements), it was decided that there was need to

compensate for evaporation. Evaporation losses will have a

more significant effect at smaller scale which can have

knock-on effects on osmolality, mass transfer, for example.

In turn, this can affect cell growth and metabolism.

In summary, we showed that the ambr 15f does support

comparable culture performance in terms of cell growth,

maximum optical density and productivity as the 1 L Multi-

fors system. From the two cascade strategies tested to con-

trol dissolve oxygen we demonstrated that cascade A, a

more traditional cascade system, was more suitable to con-

trol ambr15 f system.

Adaptation of fed-batch feeding strategy for use with
alternative carbon sources

The supplementation of glucose or glycerol was performed

as either bolus additions or exponential feeding. We tested

the how this automated system could implement the use of

alternative carbon sources (e.g., replacing glycerol with glu-

cose). Glucose concentration in the medium was limited to

30 g L21 to reduce the accumulation of acetate and its inhib-
itory effects on cell growth and productivity.39,40 To keep

the same conditions, the concentration of glycerol in the

medium was also reduced to 30 g L21. The two carbon

sources were separately tested in each culture station (Figure
1A); when the carbon source was exhausted (indicated by
pH spike) the individual vessel was supplemented with its
respective carbon source and feeding strategy to an equiva-
lent total concentration of 90 g L21. Figure 6A shows that
both feeding strategies tested were suitable to achieve similar
high OD values. As expected,41 the cells grown in medium
with glucose had a slightly higher maximum growth rate
compared to the ones grown in glycerol medium (Table 2),
ANOVA test showed that at a level of 0.05 there was signifi-
cant difference in the population means of growth rate, by

Figure 5. Fermentation traces for i, ii: dissolved oxygen (DO), iii,
iv: power per unit volume (P/V), v, vi: air flow rate
(VVM), vii, viii: oxygen flow rate (VVM), ix, x: pH and
xi, xii: volume of base added (% (v/v)) for cascade A (air/
stirrer speed/O2) and cascade B (air/O2/stirrer speed)
and for ambr 15f (�, red) and Multifors (w, black).

For each cascade: n 5 12 ambr 15f vessels and n 5 2 Multifors ves-
sels. N.B. No error bars shown for Multifors traces, cascade A after
20 h as n 5 1.
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the carbon source or feeding strategy. Cells cultured using a
bolus feeding strategy, irrespective of the carbon source,
reached the stationary phase faster (22 h post inoculation)
while the exponential fed cells reached stationary phase 24 h
post inoculation. This shows that the feeding strategy has an

important effect on the cell metabolism. In this case, the
exponential feeding strategy limits the amount of glucose/
glycerol available at a specific time in culture, thereby
slightly reducing the growth rate for either carbon source. In
all the conditions tested, the maximum OD600 nm was
approximately 100 (Figure 6A), which was maintained for
40 h. The DCW at harvest was comparable for the glucose
and glycerol fed cells (Table 2). This performance was simi-
lar to the one shown by the cells grown in medium with ini-
tial concentration of glycerol of 90 g L21 (Figure 2A)
proving that the ambr 15f system was suitable for compari-

son of medium composition and feeding strategy. We
showed that the ambr 15f can be used to implement auto-
mated feeding, which will allow better feeding control and
benefit cultures were metabolites or by products inhibit
growth.22,23

The volume availability in the ambr 15f microbioreactor
allowed time course samples to be taken to determine the
cells productivity over the fermentation. Figure 6B shows
that there was a similar productivity for cells grown in glu-

cose or glycerol medium. At induction, protein concentration
in the periplasm and cytoplasm was similar, however later in
culture there was a higher concentration of scFv1 in the peri-
plasm than in the cytoplasm; ANOVA test showed that there
was not a significant difference (at a level of 0.05) in the
mean product titer by the cells fed with glucose or glycerol.
The maximum product concentration in the periplasm was
achieved 22 h postinduction, indicating that the harvest time
could be optimized at the small scale. In addition, little prod-
uct was found in the extracellular medium, confirming data
found in the shear studies, that cells in the small scale sys-

tem were resistant to damage.

Strain and product screening

E. coli MC4100 cells expressing different scFv molecules
(scFv1, scFv2, scFv2*) and E. coli BL21 (DE3) cells express-

ing hGH and scFv3 were tested in the ambr 15f. The evalua-
tion of the molecules was performed in replicates of 8, with
4 vessels in each CS for MC4100 cells, and in replicates of
6, with 3 vessels in each CS for BL21 (DE3) cells. The posi-
tions of the molecules was randomized in the ambr 15f but
kept the same in the both culture stations while all the fer-
mentation parameters were maintained the same for all ves-
sels. There was comparable growth for the MC4100 cells
expressing different types of scFv (Figure 7A) reaching a
maximum OD600 nm of 100 that was maintained until

harvest. The lmax was 0.26 6 0.006 h21 (At a level of 0.05 t
test showed that there was no significant difference from the
population mean) and DCW at harvest 37.6 6 2.3 g L21.
However, the expression of the different products was dis-
similar; densitometry analysis showed that there was good
expression of scFv1 (�0.64 g L21), low expression of scFv2

(�0.07 g L21) and no bands were detected for scFv2*.

Figure 6. Comparison of feeding strategies and carbon source
on E. coli MC4100 cells grown fed-batch fermenta-
tion in ambr 15f system.

A: Cells were fed with 40% (w/w) glycerol (�,w) or 40% (w/
w) glucose (�,•) using bolus additions (empty symbols)
or exponential feeding (filled symbols) until they reach
an OD of 100, then constant feeding (3.2 mL L-1 h-1)
was used. n 5 6 for each condition tested. B: scFv1 con-
centration in the extracellular medium (M), periplasmic
(P) and cytoplasm (C) fractions determined by HiTrap
protein L HPLC. Vessels quantified/analyzed n 5 6 for
16 and 40 h postinduction and n 5 2 for 0 and 22 h
postinduction.

Table 2. Fermentation Parameters from E. coli MC4100 Expressing a scFv1 Grown in Minimal Medium with Glucose or Glycerol as Carbon

Source

Periplasmic product
(g L21)

Carbon
source

Feeding during
exponential phase

Fermentation
time (h)

Induction
time (h)

lmax

(h21) 16 h PI 40 h PI
DCW at harvest

(g L21)

Glucose Exponential 64.5 24 0.29 6 0.005 0.76 6 0.10 0.76 6 0.06 33.5 6 0.7
Glucose Bolus 62.5 22 0.30 6 0.004 0.78 6 0.09 0.73 6 0.29 31.5 6 2.0
Glycerol Exponential 64.5 24 0.26 6 0.005 0.62 6 0.12 0.69 6 0.09 34.1 6 2.1
Glycerol Bolus 62.5 22 0.27 6 0.001 0.67 6 0.10 0.61 6 0.16 35.5 6 2.3

PI: Time postinduction, n 5 6.
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Further quantification of expression of scFv1 was performed

by Protein L HPLC (Figure 7B); indicating a similar concen-

tration in the periplasm and cytoplasm at induction and the

product was efficiently exported to the periplasm of the cells

during the fermentation with little leakage into the extracel-

lular medium. Figure 7C shows that the growth of BL21

(DE3) cells expressing different molecules was comparable

(lmax 0.22 6 0.004 h21, with no significant difference from

the mean at level of 0.05, DCW at harvest 37.8 6 1.7 g

L21). The total protein concentration at harvest was deter-

mined by IMAC HPLC (Figure 7D) showing that there was

a comparable product expression. This demonstrates that the

ambr 15f system clearly resolves between protein expression

performance of different strains and can be used as an effec-

tive high throughput tool for screening of molecules and

strains.

Conclusion

We have shown that the microbial ambr 15f system is

capable of supporting microbial fed-batch fermentations to

high cell concentrations similar to benchtop and pilot scale

fermenters. The growth and productivity profile of all 24

microbioreactors were comparable within and across culture

stations. We demonstrated that a pH spike can be used as a

signal to activate automated system functions; in this case, a

switch in the DOT control loop, triggering actions of the

pumped liquid delivery system (i.e., feeding) or the liquid

handler (sampling and induction). In addition, we developed

fed-batch feeding strategies (bolus and exponential) that

allowed the use of glucose as an alternative carbon source to

glycerol. We showed that the ambr 15f system mimics the

growth and productivity of the 1 L fermenters (which was

previously shown to be scalable to 20 L) and that the cells

grown in the ambr 15f system are as resistant to damage as

those in larger fermenters. Additionally, we showed that a

more conventional cascade control strategy, i.e., cascade A

(air/stirrer/oxygen) would be recommended for better control

of the ambr 15f system and optimum cell growth. In sum-

mary, the ambr 15f was used successfully as a high through-

put fermentation system for screening of molecules and

microbial strains and as a scale down system that proved to

be a reproducible, controllable way of growing and express-

ing industrially relevant molecules. We have shown that the

ambr 15f is a robust, consistent high throughput system,

which provides a solid base to carry out DoE. This would

ultimate lead to a great advantage in process/product devel-

opment as time lines would be shortened. As in any high

throughput multi-vessel system useful for upstream develop-

ment, the limitation resides in the time needed to process the

samples for analytical analysis. To create a truly high speed

integrated process development, the need remains to match

Figure 7. Screening of alternative strains and molecules in ambr 15f system.

A: Growth curves during fedbatch fermentations of E. coli MC4100 cells expressing scFv1 (�), scFv2 (�) and scFv2* (filled diamonds) (n 5 8).
B: scFv1 concentration in the periplasm (�), cytoplasm (�) and extracellular medium (filled triangles) determined by protein L HPLC at 0, 15,
23, and 39 h post induction at harvest (vessels quantified/analyzed: n 5 2 for 0 and 23 h and n 5 8 for 15 and 39 h). C: Growth curves during
fed-batch fermentations of E. coli BL21 (DE3) cells expressing scFv3 (S) (�) scFv3 (I) (w) and hGH (C) (�) hGH (I & P) (�), n 5 6 for each
molecule. D: Normalised protein concentration at harvest (42 h postinduction) determined by IMAC HPLC, vessels quantified/analyzed: n 5 6 for
each molecule.
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the upstream with similar high throughput downstream pro-

cess operations.
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